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Metabolism of mice and men: mathematical

modeling of body weight dynamics

Kevin D. Hall

Purpose of review

Dynamic interrelationships between food intake, energy expenditure, energy partitioning, and metabolic
fuel selection underlie changes in body weight and composition. A quantitative understanding of these
interrelationships is becoming increasingly important given the rise of the worldwide obesity epidemic and
the widespread interest in weight management. This review describes how mathematical models offer a
quantitative framework for integrating dynamic physiological and behavioral data underlying body weight

dynamics in both humans and mice.

Recent findings

Mathematical models have provided important insights regarding the drivers of the obesity epidemic,
how metabolism adapts to different diets, the predicted magnitude and variability of weight change, and
why mouse models have obesity phenotypes. Because mathematical models are constrained by
conservation laws, they can also be used to infer physiological variables that are difficult to measure

directly.

Summary

Mathematical models can help improve our understanding of the dynamic energy and macronutrient
imbalances that give rise to changes in body weight and composition over time. The model development
process can also highlight important knowledge gaps and model simulations can help design and predict
the results of key new experiments to fill those gaps.
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Obesity is known to result from a prolonged period
of excess caloric intake over expenditure [1]. This
energy balance concept, although more descriptive
than explanatory, provides the framework for
understanding body weight regulation. Explaining
the development of obesity and developing effective
therapies requires a quantitative integration of
physiological and behavioral data within the energy
balance framework [2]. Dynamic mathematical
models can help quantify the interrelationships
between food intake, energy expenditure, energy
partitioning, and metabolic fuel selection that
underlie changes in body weight and composition.
Recently, mathematical models have been effec-
tively applied to the study of obesity in both mice
and men. In this article, I highlight several recent
applications of mathematical models to obesity
research and describe some insights provided by
these models.
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Mathematical modeling of human body weight
dynamics began in the 1970s and a review of
the various modeling approaches was recently
published [3]. Dynamic models have now reached
the level of sophistication required to accurately
predict how changes in diet and physical activity
affect body weight and body composition over time.
For example, building on a steady-state model of
human weight change that was calibrated using
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KEY POINTS

e Dynamic interrelationships between food intake, energy
expenditure, energy partitioning, and metabolic fuel
selection underlie changes in body weight and
composition.

e Realistic mathematical models have been developed
that accurately predict how changes in diet and
physical activity affect body weight and body
composition over time.

e Such models offer a quantitative framework for
infegrating dynamic physiological and behavioral data
in both humans and mice.

longitudinal body composition and energy expen-
diture data [4], Hall et al. [5™] recently developed
and validated a dynamic simulation model that
calculates how factors such as diet and exercise
can alter energy expenditure over time and thereby
lead to dynamic changes of weight and body fat.
A web-based implementation of the model (http://
bwsimulator.niddk.nih.gov) provides accurate pre-
dictions about how long it will take for different
people to reach their weight goals for a given change
of diet or physical activity. Perhaps more import-
antly, the model also calculates the permanent life-
style changes required to maintain the goal weight.
This dynamic model also provides important
insights regarding the expected time course, mag-
nitude, and variability of human weight change for
people with different initial body composition and
physical activity levels [5™,6].

Mathematical models are also beginning to
predict the weight changes of entire populations.
For example, Lin et al. [77] estimated the impact of
taxation policies for caloric sweetened beverages on
the prevalence of overweight and obesity in the USA
using the dynamic simulation model of Hall et al.
[5™]. The authors compared the model-predicted
changes in obesity prevalence to predictions
obtained using the ubiquitous ‘3500 Calorie per
pound’ static weight loss model that does not
account for dynamic changes of energy expendi-
ture. The dynamic model simulations predicted that
proposed taxation policies will result in a modest
decrease in overweight and obesity prevalence that
is substantially less than the previously calculated
values using the static model [8].

Another recent example of modeling popu-
lation weight change was performed by Church
et al. [9%"] who investigated the role of reduced
occupational physical activity on the development
of the US obesity epidemic. This study used the
dynamic mathematical model of Thomas et al
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[10,11] (http://www.pbrc.edu/the-research/tools/
weight-loss-predictor) to simulate the changes in
adult body weight corresponding to the calculated
decreases in occupational physical activity over
the past half century. Assuming that energy intake
remained constant over this time, the authors found
that the observed increase in the average weight of
men and women closely matched the model predic-
tions. The conclusion of Church et al. was that the
US obesity epidemic was almost fully explained by
the progressive decrease in occupational physical
activity. However, this conclusion is complicated
by the fact that the Thomas weight change model
has not been validated for predicting the effects of
altered physical activity. There is good reason to
believe that the Thomas model overestimates the
predicted weight changes because it assumes that
changes in any component of energy expenditure
are positively correlated to changes in spontaneous
physical activity [10,11]. Hence, decreased occu-
pational physical activity was assumed to lead to
concomitant decreases in spontaneous physical
activity — a property that is highly questionable
and significantly limits the model’s utility [3].

In contrast, Hall et al. [12] employed a validated
mathematical model of human weight change
to address the question of whether changes in the
US food supply could account for the increase
in average US adult body weight since the 1970s.
The model calculated that an average progressive
increase in energy intake of less than 250kcal per
day per person was required to generate the US adult
obesity epidemic (assuming no changes in physical
activity). This increment in food intake pales in
comparison to the rate of increase in the per capita
US food supply, which was about triple this amount
over the same period. The authors calculated that
per capita food waste has progressively increased
by 50% since the 1970s such that two-thirds of
the increased available food ended up in landfills.
This result was mirrored by independent landfill
data from the US Environmental Protection Agency.

Thomas et al. [13] recently published a useful
dynamic energy balance model of gestational
weight gain (http://www.pbrc.edu/the-research/
tools/gwg-predictor/) that helps expectant mothers
and their healthcare providers track pregnancy
progress and prescribe the energy intake required
to stay within recommendations.

Most mathematical models assume that ‘a calorie is
a calorie’ meaning that the energy content of a diet,
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and not its macronutrient composition, is the
primary determinant of weight change [14]. How-
ever, a recent computational model of human
macronutrient metabolism does not require the
‘calorie is a calorie’ assumption as the model
quantitatively tracks the metabolism of all three
dietary macronutrients to simulate how diet
changes result in adaptations of whole-body energy
expenditure, metabolic fuel selection, and altera-
tions in the major whole-body fluxes contributing
to macronutrient balance [15,16"]. Although the
model obeys the first law of thermodynamics, it
allows for the possibility that diets with different
macronutrient composition can theoretically have
differing effects on body weight and composition
[17,18]

The macronutrient metabolism model was
developed using published data from over 50
human studies and was validated by compar-
ing model predictions with the results from
independent-controlled feeding studies, including
several that manipulated dietary macronutrient
content [16"]. Despite much previous data on
reduced carbohydrate versus reduced fat diets, the
model development process revealed a significant
knowledge gap: no controlled feeding study has
investigated the effects of a selective reduction
of dietary carbohydrate versus fat while keeping
the other dietary macronutrients at their baseline
weight-maintenance values.

Model simulations can be used to address
knowledge gaps by helping plan new experiments.
For example, subjecting a cohort of ‘virtual study
participants’ to various hypothetical in-silico experi-
ments allows researchers to investigate various
protocol designs and predict the anticipated effect
size and variability of outcome measurements. The
computational model of macronutrient metabolism
was used to design a randomized, cross-over diet
study to predict the metabolic consequences and
body composition changes resulting from a selective
isocaloric reduction of dietary carbohydrate versus
fat in obese individuals [19]. The model predicted
that, while keeping dietary fat and protein at
baseline, selective reduction of carbohydrate by
~800kcal per day resulted in augmented rates
of lipolysis and fat oxidation with concomitant
reductions in body fat and 24-h respiratory quotient
(RQ). In contrast, selective reduction of ~800 kcal
per day of dietary fat resulted in no change in the
fat oxidation rate or 24-h RQ (Fig. 1). Whereas
enhanced fat oxidation with the reduced carbo-
hydrate diet might be expected to lead to greater
body fat loss, the net cumulative fat imbalance was
predicted to be more negative with the reduced fat
diet. These model predictions are now being tested in
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Computational model simulations of 24-h
respiratory quotient (RQ) change in a cohort of obese ‘virtual
study participants’ engaged in either 6 days of selective
restriction of dietary carbohydrate (@) versus an isocaloric
selective restriction of dietary fat (O). The error bars
correspond to the standard deviations of the simulated 24-h
RQ changes resulting from the various subjects having
differing initial body fat and baseline energy requirements.
The change in food quotient of the reduced fat diet (upper
dashed dotted line) and reduced carbohydrate diet (lower
dashed line) illustrate that only the reduced carbohydrate
diet resulted in a shift in metabolic fuel selection to increase
fat oxidation to match the fuel mix of the diet.

a clinical research study at the National Institutes of
Health [20].

Given the importance of energy intake on deter-
mining body weight change, it is unfortunate
that this variable is so difficult to measure in free-
living conditions [21]. Although the doubly labeled
water method is the gold standard for estimating
the average rate of carbon dioxide production,
this measurement is expensive and must be com-
bined with assumptions about average 24-h RQ
and measurements of body composition change
to estimate average free-living energy intake [227].
Recently, dynamic mathematical models have
begun to tackle the important problem of estimat-
ing changes in human free-living energy intake.
Jordan and Hall [23] demonstrated how a
dynamic mathematical model can be used to quan-
titatively integrate longitudinal body composition
data with repeated doubly labeled water measure-
ments to calculate dynamic estimates of average
free-living energy intake, energy expenditure,
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as well as 24-h RQ. Furthermore, the study
demonstrated how variability in the experimental
measurements (the model inputs) influenced the
calculated time courses of energy intake, energy
expenditure, and 24-h RQ (the model outputs) — a
task that would be prohibitively tedious without the
aid of a mathematical model. Although this model
was applied to data from growing infants over
their first 2 years of life [24,25], the methodology
is equally applicable to weight gain or loss data
in adults.

In the absence of doubly labeled water or body
composition data, Hall et al. [5"%,12] proposed a
method for calculating changes in adult energy
intake using only repeated body weight measure-
ments along with a dynamic mathematical model
of energy metabolism and body composition
change [16%,26"]. Hall et al. [5",16"] have recently
used such methods to help interpret the results of
outpatient weight loss interventions. Weight loss
programs ubiquitously result in a period of weight
loss that plateaus after about 6-8 months and
often followed by slow weight regain [27,28].
Using the longitudinal measurements of body
weight, Hall et al. applied different mathematical
models to estimate the changes of free-living energy
intake underlying the typical weight loss, plateau,
and regain trajectory. The conclusion was that the
plateau was primarily due to a short-lived adherence
to the diet intervention that was progressively
relaxed to return to the preintervention level within
the first year thereby leading to slow regain in
subsequent years. Slowing of metabolic rate was
found to play a secondary role in the weight plateau
and regain trajectory — an interpretation that is a
stark departure from the usual explanation that
focuses on metabolic slowing as the prime culprit
[27,29].

Although calculating the free-living energy
intake of groups over time is useful for data
interpretation, predicting individual energy intake
changes would be extremely valuable for assessing
diet adherence during a weight loss program.
Thomas et al. [30"] first proposed a computational
method for calculating individual energy intake and
validated their method using repeated doubly
labeled water and body composition measurements.
Hall and Chow [26"] recently introduced a
simpler methodology for using longitudinal weight
measurements to estimate energy intake changes
along with an explicit calculation of the confidence
interval of the estimate, a useful metric for assess-
ing individual diet adherence. The method was
validated using data from a limited number of
participants and, while promising, further valida-
tion is required.
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Mouse models that employ gene knockout techno-
logies have proven to be particularly insightful for
identifying molecular mechanisms of body weight
regulation. But it is often unclear whether an
observed body weight phenotype is a result of altered
energy intake, expenditure, or both. Proper under-
standing of the physiological context by which a
molecule exerts its effect on body weight requires
knowledge of how food intake, energy expenditure,
and fuel selection are dynamically interrelated
over several weeks, which is the relevant time scale
for mice.

Accurate and frequent measurements of food
intake and weight change in mice can be performed
over extended periods, but correspondingly fre-
quent measurements of energy expenditure and fuel
selection are not currently feasible. Rather, expens-
ive indirect calorimetry systems are increasingly
being used to measure energy expenditure and
respiratory exchange over periods of only a few
days. But measurements made over such limited
durations are not ideal, as body weight is deter-
mined by the past history of energy and macro-
nutrient imbalance over many weeks. Furthermore,
indirect calorimetry systems typically require
removing mice from their normal environment,
an intervention that can alter their behavior [31].
For example, the indirect calorimetry procedure
can cause weight loss mice that had previously been
gaining weight in their home cages [32].

To address these issues, Guo and Hall [33]
recently developed a dynamic mathematical method
based on the law of energy conservation that used the
measured body weight and food intake as model
inputs to calculate the underlying energy balance
and fuel selection dynamics. The model predicted
daily energy output, RQ, and net fat oxidation during
the development of obesity and weight loss in
male C57BL/6 mice consuming various ad libitum
diets over several weeks while mice were housed in
their home cages. Such methods will likely become
increasingly important as the challenges of indirect
calorimetry in mice are more widely recognized.

A recent mathematical model of mouse metabolism
and body weight dynamics was reported by Tam
etal. [34]. That model focused on the role of leptin to
influence both energy intake and energy expendi-
ture through various hypothetical feedback con-
trol strategies [35]. Although this mathematical
model provided some important theoretical insights
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regarding body weight regulation, it has not been
validated by directly comparing its predictions to
experimental data and it does not address the issue
of metabolic fuel selection.

Guo and Hall [36"] developed a mathematical
model based on the principle of energy balance to
predict the dynamics of body weight and fat mass in
male C57BL/6 mice. Their model of murine energy
expenditure included the cost of tissue turnover and
deposition, physical activity, diet-induced thermo-
genesis, and the influence of body composition
on metabolic rate. The model was calibrated using
previously published data [37] and was validated by
comparing its predictions to measurements from an
independent study of five groups of male C57/BL6
mice provided ad libitum access to either chow
or high fat diets for varying periods. The model
coefficients relating energy expenditure to body
composition also agreed with previous independent
estimates [38]. Metabolic fuel selection was pre-
dicted to depend on a complex interplay between
diet composition, the degree of energy imbalance,
and body composition.

This validated mathematical model of mouse
energy metabolism provides a novel tool for
investigating energy balance relationships. Modifi-
cation of model parameters will likely be required
to appropriately represent other strains of mice,
genetic knockouts, or transgenic mouse models.
The process of determining the parameter modifi-
cations required to accurately simulate different
mouse models will provide important quantitative
information regarding their integrative metabolic
phenotypes and the physiological and behavioral
differences between mouse models.

An editorial describing the future of biomedical
research remarked that ‘formulation of a mathe-
matical model is the ultimate test of understanding.
If the model reproduces the behavior of the system
under a range of conditions and predicts the con-
sequences of modifications in any component, one
can be relatively confident about understanding the
system’ [39]. Dynamic mathematical models are now
beginning to provide powerful tools to quantitatively
integrate physiological and behavioral data within an
energy balance framework. Such models have great
promise to improve our understanding of the body
weight regulation system in both mice and men.
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